

REF.7034

((

Certificat 3.1

Dimensions: DN 15 à 50 mm **Raccordement:** A brides R.F. PN40

Température Mini : -30°C Température Maxi : + 220°C Pression Maxi : 40 Bars

Caractéristiques: Dispositif antistatique

Motorisable (platine ISO 5211)

Axe inéjectable Tirants noyés

Sécurité Feu ISO 10497 : 2010 et API 607 V.6

Atex

Matière: Acier inox ASTM A351 CF8M

REF.7034

CARACTERISTIQUES:

- Passage intégral
- Axe inéjectable
- Presse étoupe avec rattrapage de jeu par rondelles élastiques
- Double système antistatique (bille entre axe-corps et axe-sphère)
- Sécurité feu suivant ISO 10497 : 2010 et API 607 V.6
- Poignée cadenassable
- Volant ovale et réhausse (en option)
- Motorisable (Platine ISO 5211)
- Tirants noyés
- Joints de siège haute température PEEK en option
- A brides R.F. PN40

UTILISATION:

- Industries chimiques et pharmaceutiques, industries pétro-chimiques, installations hydrauliques, air comprimé
- Vapeur : 18 bars maximum avec joints de siège chargés carbone
- Vapeur : 30 bars maximum avec joints de siège PEEK
- Tenue au vide 10-2 torr
- Températures mini et maxi admissibles Ts: -30°C à + 220°C pour modèle inox avec joints de siège chargés carbone Ref. 7034
- Températures mini et maxi admissibles Ts: -10°C à + 260°C avec sièges PEEK (option)
- Pression maxi admissible Ps: 40 bars

COEFFICIENT DE DEBIT Kvs (M3/h):

DN	15	20	25	32	40	50
Kvs (m3/h)	31.3	57.86	94.25	157.9	227.9	414.8

GAMME:

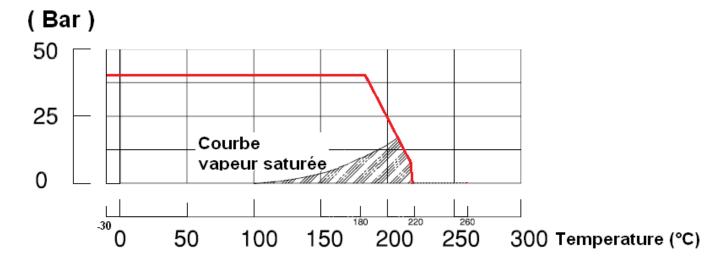
Robinet tournant sphérique 3 pièces sécurité feu à brides PN40 Ref. 7034 du DN 15 au DN 50

RACCORDEMENT:

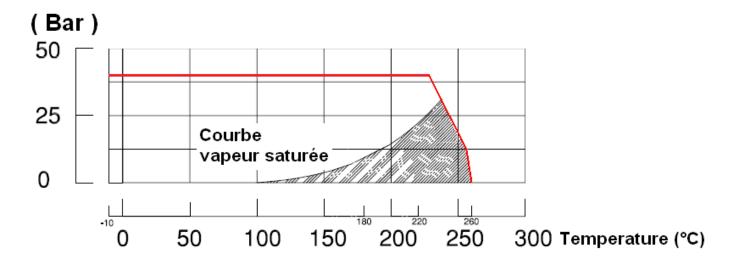
A brides R.F. PN40

OPTIONS:

- Volant ovale inox 304 Ref. 9830441-9830475
- Kit réhausse en inox 304 Ref. 9830471-9830474
- Kit de joints haute température PEEK (comprenant joint de corps et presse étoupe Grafoil, rondelle de glissement PTFE chargé 15% verre + Grafoil et joints de siège PEEK) Ref. 9804381-9804386

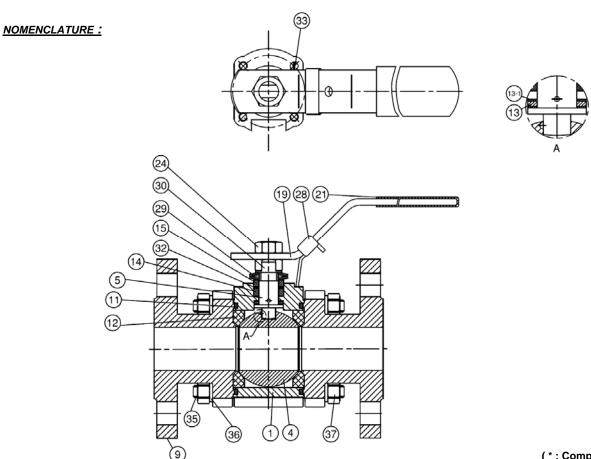


REF.7034


COURBE PRESSION / TEMPERATURE AVEC JOINTS DE SIEGE CHARGES CARBONE :

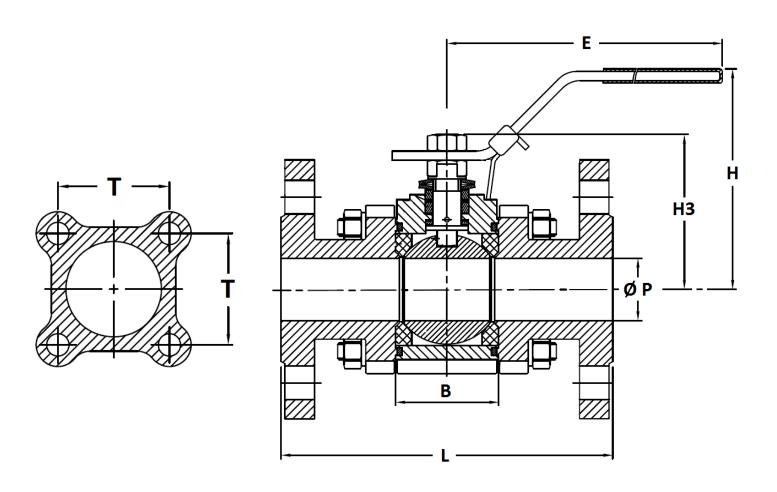
PRESSION

COURBE PRESSION / TEMPERATURE AVEC OPTION JOINTS DE SIEGE PEEK :


PRESSION

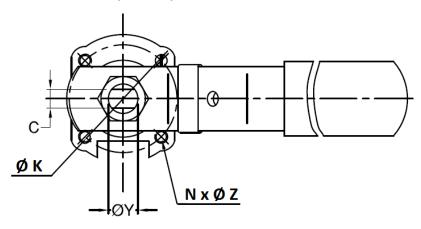
(*: Compris dans le kit joints)

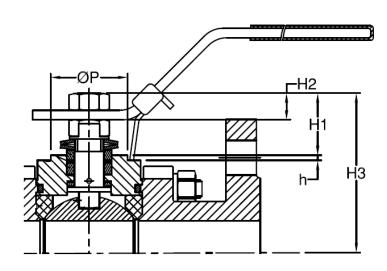
Repère	Désignation	Matériaux
1	Corps	ASTM A351 CF8M
4	Sphère	ASTM A351 CF8M
5	Axe	Inox AISI 316
9	Embouts	ASTM A351 CF8M
11*	Joints de corps	Graphite
12*	Siège	PTFE chargé 25% carbone
13*	Bague	Graphite
13-1*	Bague	PTFE chargée 15% verre
14*	Presse étoupe	Graphite
15	Entretoise	Inox AISI 304
19	Poignée	Inox AISI 304
21	Gaine poignée	Plastique
24	Ecrou poignée	Inox AISI 304
28	Système de cadenassage	Inox AISI 304
29	Rondelles élastiques	Inox AISI 301
30	Rondelle frein	Inox AISI 304
32*	Garniture P.E.	PTFE chargée 15% verre
33	Butée	Inox AISI 304
35	Goujon	ASTM A193 Gr.B8
36	Rondelle	Inox AISI 304
37	Ecrou	ASTM A194 Gr.B8



REF.7034

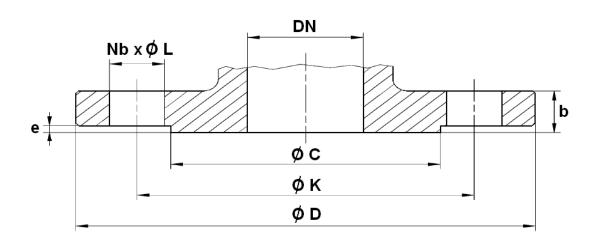
DIMENSIONS (en mm):


Ref.	DN	15	20	25	32	40	50
	ØР	15	20	25	32	38	50
	L	130	150	160	180	200	230
	E	154.9	154.9	199.7	199.7	232.2	211
7034	н	86.6	93.5	105.3	111.2	122.1	130
7034	Н3	46.1	50.9	61.4	66.8	80	99.4
	В	24.5	31.4	41.3	48.4	56.3	72
	Т	35	41.3	48	56.2	63.6	79.2
	Poids (Kg)	2.32	3.37	4.53	6.58	8.24	13



REF.7034

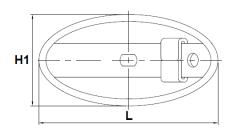
DIMENSIONS PLATINE ISO ET AXE (en mm):

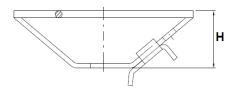

Ref.	DN	15	20	25	32	40	50
	H1	17.1	18.1	25.4	26.2	32.4	28.5
	H2	11.1	9.1	13.1	12.6	14.9	15.5
	Н3	46.1	50.9	61.4	66.8	80	99.4
	h	2	2	2	2	2,2	1,5
7034	С	6,5	6,5	8	8	9,7	12
7034	ØΥ	9,5	9,5	11,1	11,1	14,2	19
	Ø P	25	25	30	30	35	55
	øκ	36	36	42	42	50	70
	ISO	F03	F03	F04	F04	F05	F07
	NxØZ	4x M5	4x M5	4x M5	4x M5	4 x M6	4 x M8

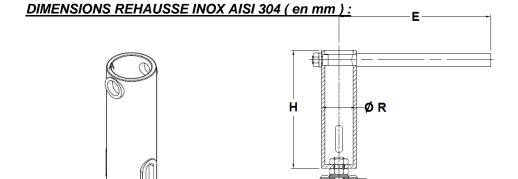
REF.7034

DIMENSIONS BRIDES (en mm):

DN	15	20	25	32	40	50
øс	45	58	68	78	88	102
Ø D	95	105	115	140	150	165
øк	65	75	85	100	110	125
Nb x Ø L	4 x 14	4 x 14	4 x 14	4 x 18	4 x 18	4 x 18
b	16	18	18	18	18	20
е	2	2	2	2	3	3






REF.7034

DIMENSIONS VOLANT OVALE INOX AISI 304 (en mm):

DN	15	20	25	32	40	50
L	116	116	130	130	147	194
н	35	35	40	40	43	51
H1	62	62	82	82	87	98
Poids (Kg)	0.12	0.12	0.18	0.18	0.22	0.34
Ref.	9830441	9830441	9830442	9830442	9830443	9830475

DN	15	20	25	32	40	50
н	125.5	125.5	125.5	125.5	127.5	127.5
E	126.5	126.5	161	161	194	198.5
Ø R	31	31	37	37	43	52
Ref.	9830471	9830471	9830472	9830472	9830473	9830474

REF.7034

COUPLES DE MANŒUVRE (en Nm sans coefficient de sécurité) :

DN	15	20	20 25		40	50
Pression (bar)		20	25	32	40	50
Couple de démarrage	10	12	19.2	25	28.7	50
17	9.5	10	16	17	18	36
34	10	10	17	18	18	36

COUPLES DE SERRAGE DES TIRANTS (en Nm):

DN	15	20	25	32	40	50
Couple (Nm)	9.8	22.07	22.07	39.2	39.2	58.8

NORMALISATIONS:

- Fabrication suivant la norme ISO 9001 : 2015
- DIRECTIVE 2014/68/UE : CE N° 0038 Catégorie de risque III module H
- Certificat 3.1 sur demande
- Construction suivant la norme EN 12516-1
- Conception suivant ASME B16.34
- Tests d'étanchéité suivant la norme EN 12266-1, Taux A
- Sécurité feu suivant ISO 10497 : 2010 et API 607 V.6 (uniquement avec les joints de siège chargés carbone)
- Brides R.F. suivant la norme EN 1092-1 PN40
- Platine suivant la norme ISO 5211
- Ecartement suivant la norme EN 558 série 1 (NF 29355 DIN 3202 F1)
- ATEX Groupe II Catégorie 2 G/2D Zone 1 & 21 Zone 2 &22 (marquage en option) selon directive 2014/34/EU

PRECONISATIONS : Les avis et conseils, les indications techniques, les propositions, que nous pouvons être amenés à donner ou à faire, n'impliquent de notre part aucune garantie. Il ne nous appartient pas d'apprécier les cahiers des charges ou descriptifs fournis. Il appartient au client de vérifier l'adéquation entre le choix du matériel et les conditions réelles d'utilisation.

REF.7034

INSTRUCTIONS DE MONTAGE ET DE MAINTENANCE

AVANT MONTAGE:

Les tuyauteries doivent être parfaitement nettoyées et exemptes de toutes impuretés pouvant endommager les étanchéités et la sphère. Les tuyauteries doivent être parfaitement alignées et leur supportage suffisamment dimensionné afin que les vannes ne supportent aucune contrainte extérieure.

L'étanchéité des vannes taraudées doit ce faire avec le produit le plus approprié aux conditions de service. Le serrage des embouts doit être réalisé avec des outils adéquats afin de ne pas endommager les embouts. Le couple nécessaire à l'assemblage ne doit pas provoquer de tensions ni déformations de la structure des embouts.

La soudure des embouts pour les raccordements SW et BW doit se faire avec la partie centrale de la vanne déposée. Un gabarit (mannequin) se substitue à la vanne pour garantir l'écartement et l'alignement des embouts.

MONTAGE DE LA PARTIE CENTRALE

Lors du montage de la partie centrale de la vanne dans le cas de raccordements à souder (SW BW), il est impératif de respecter le couple de serrage indiqué dans le tableau ci-dessous. Le serrage des tirants doit se faire en croix.

COUPLES DE SERRAGE DES TIRANTS (en Nm):

DN	15	20	25	32	40	50
Couple (Nm)	9.8	22.07	22.07	39.2	39.2	58.8

NETTOYAGE ET ESSAIS

Les vannes resteront ouvertes pendant l'opération de nettoyage des tuyauteries pour ne pas avoir d'impuretés entre la sphère et le corps.

Les essais sous pression de l'installation doivent être effectués lorsque la tuyauterie est parfaitement propre.

Les essais se font vanne partiellement ouverte. La pression d'essai ne doit pas dépasser les caractéristiques de la vanne et conformément à la norme EN 12266-1.

MAINTENANCE

Il est recommandé de faire une manœuvre complète (ouverture, fermeture) de la vanne 1 à 2 fois par an.

Lors d'une intervention sur la vanne, s'assurer que la tuyauterie n'est plus sous pression, qu'il n'y a plus d'écoulement dans la tuyauterie, que celle-ci est isolée. Vidanger tout fluide dans la tuyauterie. La température doit être suffisamment basse pour pouvoir effectuer l'opération sans risque. Si le fluide véhiculé est corrosif, inerter l'installation avant intervention.

Lors de la mise sous pression :

Si une fuite est détectée entre le corps et les embouts, pratiquer un resserrage en tenant compte des couples indiqués dans le tableau "couple de serrage des tirants"

Si une fuite est détectée au niveau du presse-étoupe, resserrer celui-ci jusqu'à la parfaite étanchéité en exerçant un serrage adéquat de la garniture de presse-étoupe.

OPERATION DE MAINTENANCE EN ATELIER

REMPLACEMENT DES JOINTS DE SIEGE ET DE PRESSE ETOUPE

La partie centrale de la vanne doit être désolidarisée des embouts.

Mettre la sphère en position semi ouverte et retirer les sièges.

Mettre la vanne en position fermée pour sortir la sphère. Vérifier que la surface d'étanchéité de la sphère ne présente ni impacts ni rayures profondes. Dans le cas de rayures profondes ou d'impacts important, le remplacement de la sphère s'impose.

Nettoyer soigneusement l'intérieur du corps de la vanne afin d'enlever tous les dépôts et impuretés pouvant se trouver dans le corps de la vanne.

Pour le remplacement de la garniture de presse-étoupe, démonter la poignée, desserrer l'écrou de fouloir, extraire l'axe par l'intérieur de la vanne.

Nettoyer le puits de presse-étoupe.

Remonter les bagues de glissement sur l'axe, introduire l'axe par l'intérieur de la vanne, repositionner les bagues de presse-étoupe avec le fouloir, remettre les rondelles élastiques, l'écrou de fouloir et la poignée.

Placer l'axe en position vanne fermée et repositionner la sphère.

Mettre ensuite la sphère en position ouverte et remonter les sièges.

Replacer le corps sur l'installation, serrer les tirants en respectant le couple de serrage des tirants.

Les essais sous pression effectués lors de la remise en service seront réalisés de la même manière que lors de la première mise en place.

